

Chapter 16 Section 4: Composition of Functions

WARM-UP

- Evaluate and graph the piecewise function below. $f(x)=x-2, \quad x \leq-3$

$$
\begin{aligned}
& 5, \quad-3>x \leq 6 \\
& -2 x+1, \quad x>6
\end{aligned}
$$

$f(-1)=$
$f(5)=$
$f(10)=$

Chap. 16 Sect 4: Learning Targets

- I can recognize a composition of functions
- I can simplify a composition of functions
- I can use composition of functions to check if they are inverses of each other.

Composite of Two Functions

The combination of two functions such that the output from one function becomes the input for the other.

$$
\begin{gathered}
(f \circ g)(x)=\text { or } f(g(x))= \\
\text { "f of } g(x) "
\end{gathered}
$$

So if...
$f(x)=4 x$
$g(x)=3 x+2$

Solving Composite of Functions

To solve a composite, substitute \& solve as much as possible So if...

$$
\begin{array}{lrr}
f(x)=4 x & \& & g(x)=3 x+2 \\
\hline \text { "f of } g(x) " & & " g \text { of } f(x) " \\
\hline f(g(x))= & g(f(x))=
\end{array}
$$

Checking For an Inverse

You can use compositions of functions to determine whether two functions are inverses of eachother.

If $f(x) \& g(x)$ are inverse functions,

$$
\text { then } f(g(x))=g(f(x))=x
$$

Try it...

$$
f(x)=\frac{x+8}{3}
$$

$$
g(x)=3 x-8
$$

